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Three adaptive line enhancer (ALE) algorithms and architectures--namely, con-
ventional ALE, ALE with double filtering, and ALE with coherent accumulation--

axe investigated for fast carrier acquisition in the time domain. The advantages
of these algorithms axe their simplicity, flexibility, robustness, and applicability to

general situations including the Earth-to-space uplink carrier acquisition and track-

ing of the spacecraft. In the acquisition mode, these algorithms act as bandpass

filters; hence, the carrier-to-noise ratio (CNR) is improved for fast acquisition. In

the tracking mode, these algorithms simply act as lowpass filters to improve signal-

to-noise ratio; hence, better tracking performance is obtained. It is not necessary to

have a priori knowledge of the received signal parameters, such as CNR, Doppler,

and carrier sweeping rate. The implementation of these algorithms is in the time

domain (as opposed to the frequency domain, such as the fast Fourier transform

(FFT)). The carrier frequency estimation can be updated in real time at each time

sample (as opposed to the batch processing of the FFT). The carrier frequency to

be acquired can be time varying, and the noise can be non-Gaussian, nonstationary,
and colored.
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I. Introduction

The present spacecraft transponder acquires and tracks the carrier signal by using a phase-locked

loop (PLL). Because the frequency sweeping technique is employed in the acquisition process, the time

that it takes for the PLL to acquire the uplink carrier is relatively long. The sweeping rate is set to

about 40 Hz/sec when the spacecraft receiver signM-to-noise ratio (SNR) equals -151 dBm for a deep-

space mission. To sweep =kl0 kHz from the best locked frequency, 17 min are required to complete the

acquisition process. Therefore, there is a need for fast-acquisition technique development with application

to the transponder. In general, a fast-acquisition technique as shown in Fig. 1 will be very useful for

deep-space missions, especially in emergencies. First, the receiver is in the acquisition process. Second,

when the uplink carrier is acquired and indicated by the lock detector, the switch is then shifted to

the tracking position and the tracking process takes over immediately. Although devised to support the

space mission, the fast-acquisition technique proposed in this article is also applicable to other types of
receivers, including fixed-ground and mobile receivers.

The problem of estimating certain parameters of a sinusoidal signal in the presence of noise is of

general interest and has received considerable attention in the literature [1]. Examples may be found in

vibration measurements, Doppler radar returns, geophysical processing, and communication systems [2].
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Many techniques, such as the fast Fourier transform (FFT) [3] and adaptive least-squares algorithms [4],

have been proposed in the literature to solve such problems. These methods provide excellent results but

may require excessively long observation times because of batch processing.

Recently, time-domain spectral estimation techniques based on an adaptive line enhancer (ALE) system

have been introduced [5-9]. The ALE system is depicted in Fig. 2. The system, which was introduced by
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Widrow [5], uses the measured signal as the desired response and a delayed version of itself as input. The

principle is that the delay should decorrelate the noise between the primary and reference inputs while

leaving the narrowband carrier signal correlated. When functioning ideally, the adaptive filter output is

an enhanced version of the carrier components with a higher carrier-to-noise ratio (CNR). Both CNR

and SNR are used in this article, and they are interchangeable.

The adaptive filter depicted in Fig. 2 is a time-varying system and the weight vector is updated, based

on the least-mean-squares (LMS) algorithm. The LMS algorithm is based on the method of steepest

descent [5]. Many applications have been developed using the LMS algorithm; the fast measurement

of digital instantaneous frequency in [6] and [12] are examples. In addition, it is well known that the

LMS-type algorithms are more robust to sudden variations in the environment than the FFT algorithms.

Three ALE algorithms and architectures for fast acquisition are presented in this article. The analysis

of the general properties of an ALE is given in Section II. It contains discussion of an optimal adaptive

filter, optimal gain, and a steady-state frequency response. Section III introduces two modified ALE

algorithms: the ALE with double filtering (ALEDF) and the ALE with coherent accumulation (ALECA).
Implementation is considered in Section IV. Simulations for acquiring fixed-frequency-signal acquisition

are provided in Section V. Performance comparison of these adaptive line enhancers is also discussed in

Section V. A discussion and the conclusion are given in Section VI.

PRIMARY INPUT

Xk= Sk + nk "_ + ERROR ekINPUT

I REFERENCE

I INPUT

_f

k. OUTPUT Yk

Fig. 2. The structure of the conventional adaptive line enhancer.

II. Analysis of the Optimal ALE

It is shown in [10] that, in general, the real LMS algorithm is not equivalent to the real part of the

complex LMS algorithm. However, when the algorithm is configured as an ALE with sinusoidal inputs,

the mean weight behavior of the real algorithm is identical to the real part of the mean weight of the

complex algorithm. There are simplicities in the analysis of the complex model that do not exist in

the analysis of the real model. Consequently, the analysis will be performed by using complex models

in Sections II and III. Both the system gain and the steady-state frequency response of the ALE are
provided in this section.

A. The Optimal Adaptive Filter

The input signal of Fig. 2 is xk, which contains carrier component sk and white noise component nk

2 The signal at the primary input is defined aswith power a n.
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_:i i̧:!il Xk = 8k "t- nk

= ae j(w°kT+¢) + nk (1)

where a denotes the signal amplitude, ¢ denotes the signal phase, T is the sampling period, and Wo is the

carrier frequency.

In vector/matrix form,

Xk --= Sk + Ilk

= aeJ(w°kT+g')q + nk (2)
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where

xk = [xk xk- .-. xk- ] r (3)

q = [1 e -j_°T e -j2_°T ... e-JL_°T] T (4a)

Ilk = [nk nk-1 "" nk-L] T (4b)

are vectors of length (L + 1). The input signal vector to the adaptive filter is Xk_m, where m is the delay

unit. The delay unit m chosen must be of sufficient length to cause the broadband noise components in

the filter (reference) input to become uncorrelated from those in the primary input. The carrier signal

components, because of their periodic nature, will remain correlated with each other. The adaptive filter

output is

Yk = whxk-m (5)

where wk = [w0 wl "" WL] T and H denotes the conjugate transpose. The error sequence is defined as

ek=Xk -- Yk (6)

The weight vector is updated as follows:

Wk+ 1 _---W k _- 2#ekX__ m

where * denotes the conjugate operation and # is the step size of the adaptation.

The convergence of the weight vector is assured by [5]

0 </.t <
(L + 1)(carrier + noise power)

(7)

(8)
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where L + 1 is the number of taps of the adaptive filter.

Wiener weight vector, is found in [5] as

where

Wop_ = R-lp

The optimal weight vector Wopt, called the

R = E [Xk_mX_tm] =- R_ + RN = a2qq H + a_I

Rs -- autocorrelation matrix of the carrier

2
Rn -- autocorrelation matrix of the noise with power an

p = E [xk-mx_] = a2e-Jw°mTq

By applying the matrix inversion lemma, also called the "ABCD lemma,"

(A + BCD) -1 = A-I[I - B(DA-1B + C-1)-IDA -1]

The R -1 is obtained as follows:

-i I [---- I-- a2 ]( )-an_I + a2qIqH_ a--_n a2nI +(L+ 1)a 2qqH
R-l=

where

A = a2I

B -- a2q

C =I

D __qH

The optimal weight is then obtained as follows:

Wopt = R-ip = ]3zom q

where

a 2
Z=

o 2 + (L + 1)a 2

z 0 = eJWo T

144

(9)

(10)

(il)

(12)

(13)

(i4)

(i5)

(16)

(17)

(is)

(19)

(20)



,_ , /H ¸

E: L ,, :.

ii:i_i!_

:'L ¸:: ;

/ •

When the adaptive filter converges to its steady state, the weight vector fluctuates around its optimal
solution.

B. The Optimal Coherent Processing Gain of the ALE

The optimal linear solution for selecting the weight vector of an ALE is similar to that for the so-called

"matched filter." For a carrier at frequency Wo embedded in white noise, the matched filter response is

a sampled sinusoidal signal whose frequency is wo. The matched filter produces the peak SNR at each

sample, but does not preserve the carrier signal waveform at the output, especially when the input signal
has time-varying parameters. The matched filter solution does provide the best SNR gain obtainable

by linear processing. However, the solution can be constructed only by giving prior knowledge of the

frequency Wo. On the other hand, the ALE output Yk preserves the carrier signal waveform as shown in

Eq. (21). Furthermore, it is not necessary to have a priori knowledge of the received signal parameters,
such as carrier SNR, Doppler, and carrier sweeping rate. For example, the carrier frequency sweeping

rate depends on the uplink carrier signal level for a deep-space mission. The uplink carrier frequency

wo sweeping rate is set to about 544 and 40 Hz/sec around the best-lock frequency when the carrier

signal level is equal to -110 and -151 dBm, respectively. Therefore, the ALE method is designed to

approximate the optimal SNR gain obtained by the matched filter solution for this problem.

The optimal steady-state carrier component at the ALE system output is

H gae j (wo kT+¢)Ysk = WoptXk-m ---- -_ gSk (21)

where the optimal coherent processing gain is

(L+l)a2 = (L+ 1)fl
g = (L+ 1)a 2 +_

(22)

Clearly, the carrier component at the ALE output has the same phase (or delayed by 27rn, n being an

integer) as the input signal and is multiplied by the real processing gain factor g. The ALE system total

power output at steady state is

* = = WoptRwop t (23)

Substituting Eqs. (10) and (18) into Eq. (23), the ALE system total power output becomes

E [ykyk] = g2 a2 + L + l j
(24)

This ALE system output CNR is then obtained as follows:

CNRo.t = output carrier power _ E (k )] _ (L + 1)a2 (25)
o tput noise power Ely,(k)]

The ALE system input CNR power ratio is

input carrier power a2

CNRinput = input noise power _2
(26)
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Therefore, the ALE optimal steady-state CNR gain is

CNRoutput _ L + 1 (27)
GALE- CNRinput

Equation (27) shows that the ALE optimal CNR gain is proportional to the length of the adaptive filter.

C. The Steady-State Frequency Response of the Optimal ALE

From Fig. 2 and using the z-transform, one can derive the transfer function of the ALE. It is obtained
as follows:

where

H(z)- Y(z)
X(z) - z-mW(z) (28)

L m I -- (ZoZ--1) (L+I) (29)W(z)=Z{w;p'(k)}=zz$_ z_z-_=zz° 1-zoz-1
i=0

Therefore, H(z) is

_ (z0z-1)(L+i)
H(z) = 3z-'_z_ 1 1 - zoz -1

Consequently, the optimal steady-state frequency response of the ALE is

H(w) = _e j@°-_)mT 1 - ej(_°-"_)T(L+I)
1 -- eJ@o-_)T

(30)

= fleJ(_o__)(m+L/2)Tsin [((L+ 1)/2)(Wo- w)T]
sin [(1/2)(Wo- w)T]

(3i)

At w = Wo, the optimal frequency response (the peak value of the transfer function) becomes

H(wo) = _(L + 1) = g (32)

Equation (32) shows a real constant gain g at the frequency wo, which is the acquired or tracked carrier
frequency.

Steady-state magnitude responses of the optimal ALE with filter lengths of 16- and 32-taps are shown

in Fig. 3, where the sampling frequency is equal to lOwo. It is observed that the magnitude response of

the 32-tap ALE has much sharper cutoff frequency and twice the frequency resolution of the 16-tap ALE.

It also shows that the ALE acts as a bandpass filter and the center frequency of the ALE is adapted to

track the frequency of the input carrier signal. Consequently, when the wo of the input carrier is changed
(either increased or decreased), the center frequency of the bandpass filter will follow. Furthermore, the
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steady-state response of the ALE at frequency wo is related to the input CNR and the length of the

weight as depicted in Eq. (33):

(L + 1)CNRi_p_

20 log iH(wo)l = 20 log(g) = 20 log 1 + (L + 1)CNRinput dB
(33)

Equation (33) is plotted and shown in Fig. 4. It shows that, at high input CNR, the adaptive filter
has a gain close to 1. This means that the carrier will pass through the adaptive filter (filter weighting

function is about 1) nearly 100 percent; the error sequence obtained after the subtraction is minimized in

the least-mean-square sense. At low input carrier SNR (SNR < -20 dB), the adaptive filter gain is close
to 0. This indicates that when the noise component is much stronger than the carrier component, the

best filter gain obtained should be small so that the error sequence will not increase ia the least-square

sense.
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Fig. 3. The magnitude response of the optimal ALE with filter lengths of 16 and 32.

III. The ALEDF and ALECA Algorithms

In general, the ALE's CNR gain can be doubled by doubling the length based on Eq. (27), which

also doubles the frequency resolution. However, this means that the total number of operations required

will be doubled. Two ALEs, modified to improve the ALE system performance at the given frequency

resolution and without increasing the computational load too much, are presented in this section.

A. The Adaptive Line Enhancer With Double Filtering

The first modified ALE is the so-called ALE with double filtering (ALEDF) and is shown in Fig. 5. A

finite-impulse response (FIR) filter is cascaded with the ALE as the second stage. Coefficients of this FIR
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filter are a real-time copy of those of the adaptive filter in the ALE. By filtering the received signal using
two identical filters, the overall system gain is squared in linear scale or doubled in dB scale. Consequently,
the overall processing gain at the desired signal of the ALEDF is equal to g2. However, the processing
time of this ALEDF is 2(L + 1)T, where T is the sampling period. Note that the processing time of an
ALE with 2(L + 1) taps is the same as that of the ALEDF with (L + 1) taps per filter. The magnitude
responses of both the ALEDF and ALE with 16 taps per filter are given in Fig. 6. Both magnitude
responses have the same frequency resolution. Due to double filtering, the magnitude response of the
ALEDF has a sharper cutoff frequency and much lower sidelobes compared with those of the ALE, as
shown in Fig. 6. However, the magnitude response of the ALEDF of Fig. 6 has half-frequency resolution
and much lower sidelobes compared with those of the ALE with 32 taps, as shown in Fig. 3. This is due
to the fact that the ALEDF has two 16-tap filters in cascade while the ALE has 32-tap filters.
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Fig. 4. The coherent processing gain magnitude response of the optimal ALE at the tracked
frequency COoversus the input CNR.
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l IT
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Fig. 5. The structure of the adaptive line enhancer with double filtering (ALEDF).
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Fig. 6, The optimal magnitude response of both the ALEDF and ALE; filter length = 16.

B. The Adaptive Line Enhancer With Coherent Accumulation

The second modified architecture is the so-called ALE with coherent accumulation (ALECA); it is

depicted in Fig. 7. The ALECA was first introduced in [11]. Figure 7 shows that an ALE output is
cascaded with a closed feedback loop. This loop contains real-time copied filter coefficients from the

adaptive filter of the ALE, an m-delay unit, and a multiplication parameter c. The output of the ALE

is the input of the second stage. It ha& been shown in Eq. (21) that the carrier component of the ALE

output Yk has the same phase as the input carrier component. By applying the same processing in the

feedback loop (i.e., the same delay units and same filter as that of the reference input line in the ALE),

the carrier component of Yb will have the same phase as that of Yk. Therefore, it is an ALE with coherent

accumulation to produce the final output Ya.

INPUT Xk= Sk + n k +

l z-m H w(z, 

//-
, I

w(z) -4 c-z-

|

/

Ya

I
Fig, 7. The structure of the adaptive line enhancer with coherent accumulation (ALECA).
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This ALECA architecture uses a recursive loop. Consequently, the stability of the system is of concern.

To ensure the stability of the ALECA system, the feedback parameter c must be less than 1 and greater

than or equal to 0 (Appendix). The ALECA becomes a conventional ALE when c = 0. The ALECA
system performance is analyzed and given in the following sections.

1. The Steady-State Frequency Response of the Optimal ALECA. From Fig. 7, the overall
transfer function is

Ya(z) H(z)
X(z) - 1 - oH(z) (34)

Therefore, the steady-state frequency response to the input Sk is

r_eJ(_o_,,,)(m+ L/2)Tsin[( ( L + 1)/2)(Wo -- w)T]

Ha(w) = _ sin[(1/2)(wo - w)T] (35)

1 cfleJ(_o-C°)(m+L/2) Tsin[((L + 1)/2)(Wo -- w)T]
- sin[(1/2)(Wo - w)T]

At w = Wo, the frequency response becomes

H_(wo) = g (36)
1- c9

Note that g is less than or equal to 1.

the magnitude response at w = Wo versus input CNR is obtained and given in Eq. (37):

When e approaches 1/g, Ha(wo) becomes infinite. Consequently,

#

(L + 1)CNRinput/(1 + (L + 1)CNRinput)20 log IHa(wo)[ = 20 log[ _ [ = 20 lOg ll _ c[(L + 1)CNRinput/(1 + (L + 1)CNRinput)] dB (37)

2. ALECA System Performance. Figure 8 shows the magnitude response of the optimal ALECA

at w = Wo versus input CNR based on Eq. (37). Figure 9 shows the magnitude response of the optimal

ALECA versus the frequency based on Eq. (35) with several different e values. When parameter c equals
zero, the ALECA becomes the conventional ALE. When parameter c is close to 1, the peak value of the

ALECA transfer function is significantly higher than that of the conventional ALE, which also leads to

some improvement in CNR gain due to the smaller effective noise bandwidth.

IV. Implementation Considerations

Starting with this section, only the real (not complex) case is considered. The total number of opera-

tions required is 2L + 2 for both multiplications and accumulations of an ALE system using Eqs. (15) and

(17) with a filter length of L + 1. However, the computation of the ALEDF with L ÷ 1 taps would require
3L + 3 multiplications and 3L + 2 additions. This is because Eq. (17) is employed once while Eq. (15) is

used twice. The total number of multiplications and additions required of an ALE with 2(L + 1) taps is

4L + 4 and 4L + 4, respectively. However, this (2L + 2)-tap ALE has twice the frequency resolution and

CNR gain of the 2(L + 1)-tap ALE. Clearly, 25 percent of the multiplications and additions are saved in

the ALEDF with L + 1 taps in comparison with 2(L + 1)-tap ALE. The total number of multiplications
and accumulations required of the ALECA with the filter length of L + 1 is 3L + 4 and 3L + 3, respectively.

Table 1 shows the computational load comparison between several ALE architectures.
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Table 1, The computational load comparison between
several ALE architectures.

Number of ALE (filter ALEDF (length: ALECA (length:
operations length: L + 1) L + 1/filter) L + 1/filter)

Multiplications 2L + 2 3L + 3 3L + 4

Additions 2L + 2 3L + 2 3L + 3

V. Simulations

The tracking performances of the 16-tap ALE, ALEDF, and ALECA are studied via simulations with

the same frequency resolution for comparison. The carrier is a sinusoidal signal with a fixed frequency,

and the sampling rate is 256 times the carrier frequency. Figure 10 shows the input signal in the time

domain with SNR = 0 dB. Figures 11, 12, and 13 present the carrier estimation obtained by the ALE,

ALEDF, and ALECA, respectively. The total number of weights is 16 per filter, the number of delays is

chosen as 1, and the parameter c is equal to 0.96875. The step size chosen is 0.000625. Visual examination

indicates that the ALECA output provides the best estimated carrier signal, the ALEDF output is second,

and the conventionM ALE is last. To show the frequency response of the filtered sequence, the sampling

frequency is changed to eight times the carrier frequency for better resolution. All other conditions are
the same as the time-domain simulation.

Figures 14 through 17 show the frequency-domain response of the input sequence, the ALE output

data, the ALEDF output data, and the ALECA output data, respectively. The location of the simulated

carrier frequency is indicated on Figs. 14 through 16 by vertical arrows on the x-axis. The desired signal
gain of the ALECA is greater than that of either the ALE or the ALEDF.
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Fig. 10. The ALE input signal in time domain with SNR = 0 dB.
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Fig. 17. Magnitude of the ALECA output data.

Furthermore, the ALECA output data provide a very sharp frequency response. These observations

all agree with our analysis in Section III.B and as shown in Figs. 6 and 9 for the ALEDF and ALECA,

respectively. Theoretically, the SNR of a system using the 16-tap ALE is improved by 12 dB over the

same system without the ALE. The performance of both the ALEDF and the ALECA should be better

than that of the 16-tap ALE by at most 3 dB, as indicated by Figs. 6 and 9. However, because the weights

of these systems slowly fluctuate even in the steady state, the true SNRs at the output are always slightly

less than their theoretical values. Note that if the filter length of the ALE is doubled, its theoretical SNR

gain becomes 15 dB. However, both the processing time and frequency resolution are doubled.

VI. Discussion and Conclusion

In this article, we presented three ALEs for fast acquisition in the time domain. Conventional ALE,

ALEDF, and ALECA systems are introduced. The theoretical performances of these algorithms are

presented with computer simulations that support their validity. A fair conclusion is made about both

the frequency resolution and processing time.

A. Frequency Resolution

To keep the same frequency resolution, all ALEs have the same number of taps per filter. The positive

features of the ALEDF over this conventional ALE are a sharper cutoff frequency in passband and much

lower sidelobes in stop band. The advantages of the ALECA over the ALE are a very narrow passband

and nearly the same sidelobes in stop band, and a signal gain that can be adjusted by parameter c. The

maximum additional CNI_ gain of either the ALEDF or the ALECA over this conventional ALE is 3 dB

due to the second filtering architecture. However, both the ALEDF and the ALECA require 50 percent

more computational operations than does the conventional ALE.
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B. Processing Time

The filter length of this conventional ALE is twice that of either the ALEDF or the ALECA. Conse-

quently, its frequency resolution is twice that of other ALEs. The advantages of the ALEDF and ALECA

over this ALE are a 25-percent saving in multiplications and additions and a 50-percent saving in the

memory location required for the weight vector. The CNR gains of both the ALEDF and the ALECA
are less than or close to that of this ALE.

These algorithms can be easily implemented via a digital signal processor or application-specific inte-

grated circuits (ASICs) at a sampling frequency of around 100 kHz to acquire the uplink carrier without
sweeping the uplink frequency. Furthermore, these algorithms can be easily integrated with either a con-

ventional voltage-controlled oscillator (VCO) in a closed-loop acquisition/tracking architecture, as the

present deep-space transponder is, or with a numerically controlled oscillator (NCO) in an open-loop
ALE-DFT scheme for acquiring and a closed-loop scheme for tracking the carrier signal.1
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Appendix

Stability of the ALECA

From the transfer function I-Ia (z), the pole of the ALECA can be found from the characteristic equa-
tion:

1 - ZoZ -i - c_(ZoZ-1)m(1 - (ZoZ-1) c+l) = 0

Let zoz -i = x; Eq. (A-l) becomes

or

1 - x - eZzm(1 - =_+i) = 0

(A-l)

(A-2)

1 1 --xL+I
- (A-3)

c_x "_ 1 - x

Let x = 1 - Ax and consider the pole closed to the unit circle (i.e,. Ax _ 0); make the Taylor's series

expansion of x in Eq. (A-3) and take only the first-order term as the approximation:

1 1 - (1 - (L + 1)Ax)
-- (A-4)

c_(1 - max) 1 - (1 - Ax)

Solving for Ax,

Ax= (L+l)_c-1 <0 if0<e<l (A-5)
(n + 1)Zcm

This implies

pole = z = - Zo1 - Ax (A-6)

Since Ax is less than 0 by choosing 0 < c < 1 and the magnitude of Zo is equal to 1, the pole is always

located inside a unit circle. Consequently, the ALECA is always stable.
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